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Summary: u-Substituted trans-a, /3-dibenzyl-y-butyrolactones were synthesized in a 

diastereoselective manner by the reaction of the potassium enolates of a, &dibenzyl-y- 
butyrolactones with electrophiles. The method was applied to the synthesis of (k)- 
trachelogenin. 

Lignans of the rrans-a, 6-dibenzyl-y-butyrolactone series bearing a hydroxyl group 

at the u-position, e. g., trachelogenin [ld(E=OH)]‘), wikstromol [le(E=OH)]*), have 

recently attracted considerable interest with the discovery of the exciting biological 
activities. The presence of the hydroxyl group cis to the 6-benzyl group is crucial for 

exhibiting the biological activities’); for example, Ca*+ blocking action is observed for 

trachelogenin, but not for its stereoisomer, epitrachelogenin. In connection with our 

studies on search for a new lead compound having interesting biological activities, we 

now report a synthesis of a variety of u-substituted trans-a, P-dibenzyl-y- 

butyrolactones(1) by electrophilic attack on the metal enolates of 01, 6-dibenzyl-y- 

butyrolactones3). 

1: E=D, Me, Et, OH 

a: R’=3,4,5-(0Me)3; R2=3,4-0Cti,0 

b: R’=3,4-(0Me)s; R2=3,4-OCH,O 

C: &3,4-(Oh’b)2; R2=3-OMe,4-OCH,Ph 

d: R’=3,4-(OMe)2; R2=3-OMe,4-OH 

e: R’=R*=3-OMe, 4-OH 

Several reports have appeared on the stereoselective alkylation of the metal 
enolates of ‘y- or Glactones. It is well recognized that the electrophilic attack on the 

enolates of 6-substituted y-butyrolactones is controlled exclusively by the p- 

substituent leading to the trans addition products’). On the other hand, Koga and 

Tomioka reported the reverse diastereofacial differentiation in the alkylation of the 

enolates of a, 6-disubstituted 6-valerolactones5); the facial preference is markedly 

affected by the exo-allylic substituent due to the 1,3-allylic strain’) only when the 
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exo-allylic substituent is much bulkier than the j3-substituent. We reasoned on the 

basis of the calculations of the minimum-energy conformations’) of the enolate of 2 

that the shielding of the bottom face by the phenyl group of the a-benzyl group due to 

the conformational rigidity induced by 1,3-allylic strain would be effective to allow 

the preferential attack of an electrophile from the upper face in spite of the presence 

of the f3-benzyl group (Fig. 1)s). 
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Our study was begun with experiments to evaluate the degree of the 

diastereoselectivities in the electrophilic attack on the metal enolate of 2 and 2’ by 

using DzO as a simple electrophileg) (Scheme 1). The potassium enolate generated by 

the reaction of Pans-a, 3-dibenzyl-y-butyrolactone (2a)“) with potassium bis- 

(trimethylsilyl)amide (KHMDS) in THF at -78OC was treated with an excess amount of 

D20 to afford la (E=D) and l’a (E-D) in a ratio of 91: 9 (90% yield) (run 1 in Table 1): 

the ratio being determined based on the 400 MHz ‘H-NMR spectrum. This result 

indicates that the phenyl group of the a-benzyl group in the metal enolate of 2 is 

sterically bulky enough to allow the p-face entry of an electrophile. Furthermore, the 

potassium enolate generated from 2’a”) gave, as expected, almost the same 

diastereoselectivity as described above (run 2). 

2’ 1’ 

Scheme 1 

The results encouraged us to synthesize a variety of a-substituted trans-or, p- 

dibenzyl-y-butyrolactones by this operation. Methylation and ethylation of 2 b 

proceeded in a stereoselective manner to give lb (E=Me) and 1 b (E-Et) as a major 

product, respectively. The yields and the ratios of the diastereoisomers are shown in 

Table 1 (runs 3, 4). The structures of these products were determined unambiguously 

by the 400 MHz ‘H-NMR spectra and/or the X-ray crystallography”). We next examined 

the hydroxylation 12) of 2 to synthesize trachelogenin and its related compounds. The 
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hydroxylation of 2 by using MoOPH’~) as an oxidizing agent, took place at -78OC to 

afford la (E-OH) as a major product (run 5). It is noteworthy that the diastereo- 

selectivity in the hydroxylation was improved to a considerable extent by addition of 

18-crown-8 to the reaction mixture (run 6). Almost the same diastereoselectivity as 

above was observed in the hydroxylation of 2c (run 7). Hydrogenolysis of compound 1 c 

(E=OH) over palladium charcoal in MeOH-THF at r.t. gave (+trachelogenin [ld(E=OH)] in 

a quantitative yield14). 

Table 1 Reactions of the enolates of 2 and 2’ with electrophilesa) 

Yieldb) 
run Substrate Electroohile Product (1 +I’) 

1 2a D20 la(E=D) 90% 
2 2’a D20 la(E=D) 91% 
3 2b Mel 1 b(E=Me) 90% 
4 2b Etl 1 b(E=Et) 77% 
5 2a MoOPH la(E=OH) 82% 
6 MoOPH la(E=OH) 95% 
7 MoOPH lc(E=OH) 93% 

Selectivityc) 
(1 / 1’) 

9119 
9119 
9416 
93ff 
63137 
83/l 7 
82/l 8 

a) The reaction was carried out in THF at -78% using KHMDS as a base. b) Isolated yield c) 
The ratio was determined by NMR spectrum or HPLC of the crude reaction mixture. d) An 
equimolar amount of 18-crown6 was added to the reaction mixture. 

This method will be applied to the synthesis of various a-substituted trans-a, p- 

dibenzyl-y-butyrolactones having intriguing biological activities. This report will also 

provide a significant example of the diastereofacial differentiation based on the 

concept of 1,3-allylic strain. 
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